Physics A

Data and Formulae Booklet

DATA FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	c	3.00×10^{8}	$\mathrm{m}\ \mathrm{s}^{-1}$
permeability of free space	$\mu_{ m o}$	$4\pi\times10^{-7}$	$\mathrm{H}\;\mathrm{m}^{-1}$
permittivity of free space	$\mathcal{E}_{ m o}$	8.85×10^{-12}	$\mathrm{F} \; \mathrm{m}^{-1}$
magnitude of the charge of electron	e	1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	$N\ m^2\ kg^{-2}$
the Avogadro constant	$N_{ m A}$	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	$J K^{-1} mol^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	$\mathbf{J} \; \mathbf{K}^{-1}$
the Stefan constant	σ	5.67×10^{-8}	$W\ m^{-2}\ K^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to 5.5×10^{-4} u)	$m_{ m e}$	9.11×10^{-31}	kg
electron charge/mass ratio	$e/m_{\rm e}$	1.76×10^{11}	$C kg^{-1}$
proton rest mass (equivalent to 1.00728 u)	$m_{ m p}$	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	$\mathrm{C}\ \mathrm{kg}^{-1}$
neutron rest mass (equivalent to 1.00867 u)	$m_{ m n}$	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	$N\;kg^{-1}$
acceleration due to gravity	g	9.81	$\mathrm{m}\;\mathrm{s}^{-2}$
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

ASTRONOMICAL DATA

Body	Mass/kg	Mean radius/m
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.98×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

arc length	$= r\theta$
circumference of circle	$=2\pi r$
area of circle	$=\pi r^2$
surface area of cylinder	$=2\pi rh$
volume of cylinder	$=\pi r^2h$
area of sphere	$=4\pi r^2$
volume of sphere	$=\frac{4}{3}\pi r^3$

AS FORMULAE

PARTICLE PHYSICS

Rest energy values

21000 01101	00		
class	name	symbol	rest energy /MeV
photon	photon	γ	0
lepton	neutrino	$v_{\rm e}$	0
		v_{μ}	0
	electron	$v_{\mu} = e^{\pm}$	0.510999
	muon	μ^{\pm}	105.659
mesons	π meson	π^{\pm}	139.576
		π^0	134.972
	K meson	\mathbf{K}^{\pm}	493.821
		K^0	497.762
baryons	proton	р	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

type	charge	baryon number	strangeness
u	$+\frac{2}{3}e$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}e$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}e$	$+\frac{1}{3}$	-1

Properties of leptons

	lepton number
particles: e^- , v_e ; μ^- , v_μ	+1
antiparticles: $e^+, \overline{v_e}$; $\mu^+, \overline{v_\mu}$	-1

Photons and energy levels

photon energy	$E = hf = hc / \lambda$
photoelectricity	$hf = \phi + E_{K \text{ (max)}}$
energy levels	$hf = E_1 - E_2$
de Broglie wavelength	$\lambda = \frac{h}{p} = \frac{h}{mv}$

ELECTRICITY

current and
$$I = \frac{\Delta Q}{\Delta t}$$
 $V = \frac{W}{Q}$ $R = \frac{V}{I}$ emf $\varepsilon = \frac{E}{Q}$ $\varepsilon = I(R+r)$

resistors in series $R = R_1 + R_2 + R_3 + \dots$

resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$

resistivity $\rho = \frac{RA}{L}$

power $P = VI = I^{2}R = \frac{V^{2}}{P}$

alternating current $I_{\text{rms}} = \frac{I_0}{\sqrt{2}}$ $V_{\text{rms}} = \frac{V_0}{\sqrt{2}}$

MECHANICS

moments moment = Fd

velocity and acceleration $v = \frac{\Delta s}{\Delta t}$ $a = \frac{\Delta v}{\Delta t}$ equations of motion v = u + at $s = \frac{(u + v)}{2}t$

 $v^2 = u^2 + 2as \qquad s = ut + \frac{at^2}{2}$

force F = ma

work, energy and $W = Fs \cos \theta$ power $E_K = \frac{1}{2}m v^2$ $\Delta E_p = mg\Delta h$ $P = \frac{\Delta W}{\Delta t}, P = Fv$

efficiency = $\frac{\text{useful output power}}{\text{input power}}$

MATERIALS

density
$$\rho = \frac{m}{V}$$
 Hooke's law $F = k \Delta L$

Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}}$ tensile stress = $\frac{F}{A}$ tensile strain = $\frac{\Delta L}{L}$

energy $E = \frac{1}{2}F\Delta L$ *stored*

WAVES

wave speed $c = f\lambda$ period $T = \frac{1}{f}$ fringe spacing $w = \frac{\lambda D}{s}$ diffraction $d \sin \theta = n\lambda$ grating

refractive index of a substance s, $n = \frac{c}{c_s}$

for two different substances of refractive indices n_1 and n_2 ,

law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

critical angle $\sin \theta_c = \frac{n_2}{n_1} \text{ for } n_1 > n_2$